

SUMMARY

Specific Weight =

$$\frac{Weight}{volume} = \frac{mg}{V} = \rho g = \gamma$$

Specific Gravity = S

$$\frac{specific\ weight\ of\ fluid}{specific\ weight\ of\ water} = \frac{\gamma_f}{\gamma_w} = \frac{(\rho g)_{fluid}}{(\rho g)_{water}} = \frac{\rho_f}{\rho_w}$$

Ideal Gas Law: (Equation of State) = $P = mRT$

Shear stress =

$$\tau = \mu \frac{dV}{dy}$$

Sutherland Constant =

$$\frac{\mu}{\mu_0} = \left(\frac{T}{T_0} \right)^{3/2} \left(\frac{T + S}{T_0 + S} \right)$$

Surface Tension =

$$F_s = \sigma L$$

Problem (2.2)

2.2 Calculate the density and specific weight of carbon dioxide at 300 kN/m² absolute and 60°C.

PROBLEM 2.2

Situation: Carbon dioxide is at 300 kPa and 60°C.

Find: Density and specific weight of CO₂.

Properties: From Table A.2, $R_{CO_2} = 189 \text{ J/kg}\cdot\text{K}$.

APPROACH

First, apply the ideal gas law to find density. Then, calculate specific weight $\gamma = \rho g$.

ANALYSIS

Ideal gas law

$$\begin{aligned}\rho_{CO_2} &= \frac{P}{RT} \\ &= \frac{300,000}{189(60 + 273)} \\ &= \boxed{4.767 \text{ kg/m}^3}\end{aligned}$$

Specific weight

$$\gamma = \rho g$$

Thus

$$\begin{aligned}\gamma_{CO_2} &= \rho_{CO_2} \times g \\ &= 4.767 \times 9.81 \\ &= \boxed{46.764 \text{ N/m}^3}\end{aligned}$$

Problem (2.4)

PROBLEM 2.4

Situation: Natural gas (10°C) is stored in a spherical tank. Atmospheric pressure is 100 kPa.

Initial tank pressure is 100 kPa-gage. Final tank pressure is 200 kPa-gage. Temperature is constant at 10°C .

Find: Ratio of final mass to initial mass in the tank.

APPROACH

Use the ideal gas law to develop a formula for the ratio of final mass to initial mass.

ANALYSIS

Mass

$$M = \rho V \quad (1)$$

Ideal gas law

$$\rho = \frac{p}{RT} \quad (2)$$

Combine Eqs. (1) and (2)

$$\begin{aligned} M &= \rho V \\ &= (p/RT)V \end{aligned}$$

Ideal Gas Law

Combine Eqs. (1) and (2)

$$\begin{aligned}M &= \rho V \\&= (p/RT)V\end{aligned}$$

Volume and gas temperature are constant so

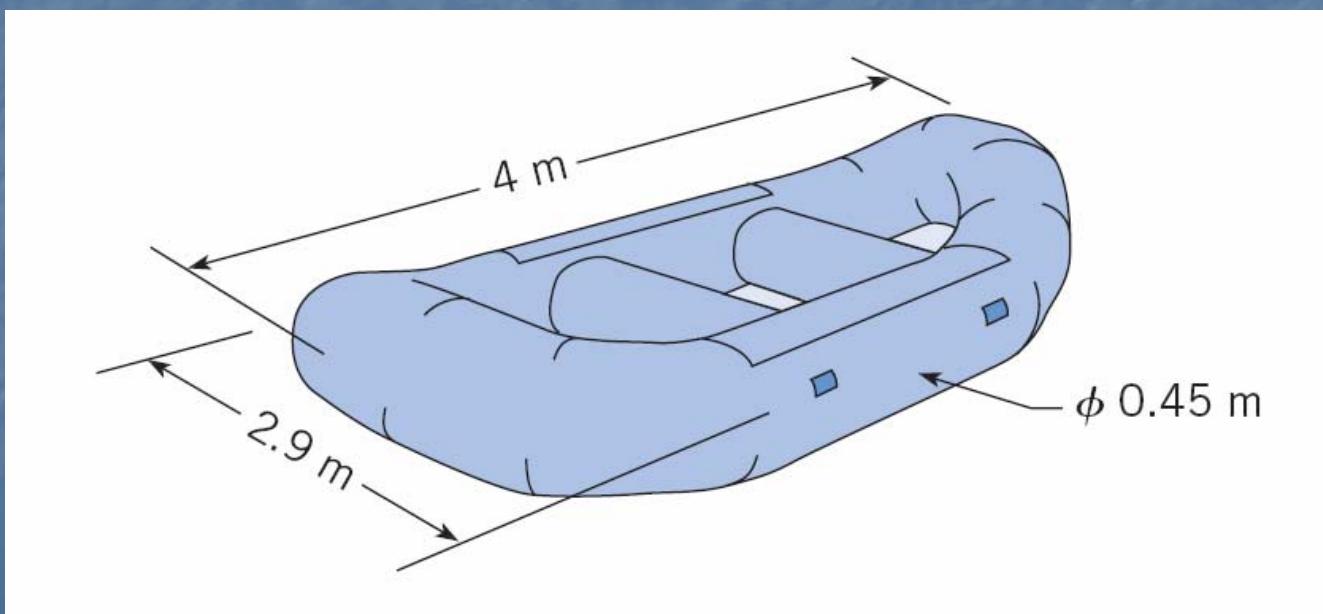
$$\frac{M_2}{M_1} = \frac{p_2}{p_1}$$

and

$$\begin{aligned}\frac{M_2}{M_1} &= \frac{300 \text{ kPa}}{200 \text{ kPa}} \\&= \boxed{1.5}\end{aligned}$$

Problem (2.10)

2.10 A design team is developing a prototype CO₂ cartridge for a manufacturer of rubber rafts. This cartridge will allow a user to quickly inflate a raft. A typical raft is shown in the sketch. Assume a raft inflation pressure of 3 psi (this means that the absolute pressure is 3 psi greater than local atmospheric pressure). Estimate the volume of the raft and the mass of CO₂ in grams in the prototype cartridge.



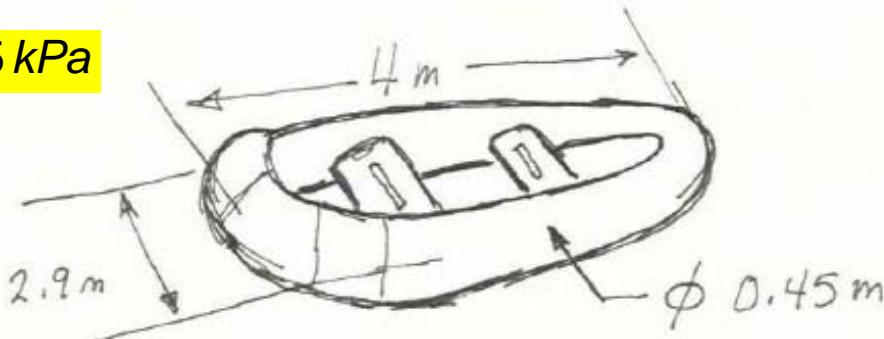
PROBLEM 2.10

Situation: A design team needs to know how much CO₂ is needed to inflate a rubber raft.

Raft is shown in the sketch below.

Inflation pressure is 3 psi above local atmospheric pressure. Thus, inflation pressure is 17.7 psi = 122 kPa.

$$1 \text{ psi} = 6.895 \text{ kPa}$$



Find: (a) Estimate the volume of the raft.

(b) Calculate the mass of CO₂ in grams to inflate the raft.

Properties: From Table A.2, R_{CO₂} = 189 J/kgK.

Assumptions: 1.) Assume that the CO₂ in the raft is at 62 °F = 290 K.

2.) Assume that the volume of the raft can be approximated by a cylinder of diameter 0.45 m and a length of 16 m (8 meters for the length of the sides and 8 meters for the lengths of the ends plus center tubes).

APPROACH

Mass is related to volume by $m = \rho \cdot \text{Volume}$. Density can be found using the ideal gas law.

ANALYSIS

Volume contained in the tubes.

$$\begin{aligned}\Delta V &= \frac{\pi D^2}{4} \times L \\ &= \left(\frac{\pi \times 0.45^2}{4} \times 16 \right) \text{ m}^3 \\ &= 2.54 \text{ m}^3\end{aligned}$$

$$\boxed{\Delta V = 2.54 \text{ m}^3}$$

Ideal gas law

$$\begin{aligned}\rho &= \frac{p}{RT} \\ &= \frac{122,000 \text{ N/m}^2}{(189 \text{ J/kg} \cdot \text{K})(290 \text{ K})} \\ &= 2.226 \text{ kg/m}^3\end{aligned}$$

Mass of CO₂

$$\begin{aligned}m &= \rho \times \text{Volume} \\&= (2.226 \text{ kg/m}^3) \times (2.54 \text{ m}^3) \\&= 5.66 \text{ kg}\end{aligned}$$

$$m = 5.66 \text{ kg}$$

COMMENTS

The final mass (5.66 kg = 12.5 lbm) is large. This would require a large and potentially expensive CO₂ tank. Thus, this design idea may be impractical for a product that is driven by cost.

Problem (2.19)

2.19 The dynamic viscosity of air at 15°C is 1.78×10^{-5} N·s/m². Using Sutherland's equation, find the viscosity at 200°C.

PROBLEM 2.19

Situation: The viscosity of air is $\mu_{\text{air}} (15^\circ\text{C}) = 1.78 \times 10^{-5}$ N·s/m².

Find: Dynamic viscosity μ of air at 200 °C using Sutherland's equation.

Properties: From Table A.2, $S = 111\text{K}$.

ANALYSIS

Sutherland's equation

$$\begin{aligned}\frac{\mu}{\mu_o} &= \left(\frac{T}{T_o}\right)^{3/2} \frac{T_o + S}{T + S} \\ &= \left(\frac{473}{288}\right)^{3/2} \frac{288 + 111}{473 + 111} \\ &= 1.438\end{aligned}$$

Thus

$$\begin{aligned}\mu &= 1.438\mu_o \\ &= 1.438 \times (1.78 \times 10^{-5} \text{ N} \cdot \text{s/m}^2)\end{aligned}$$

$$\boxed{\mu = 2.56 \times 10^{-5} \text{ N} \cdot \text{s/m}^2}$$

Problem (2.31)

Viscosity Law

2.31 The velocity distribution for the flow of crude oil at 100°F ($\mu = 8 \times 10^{-5}$ lbf · s/ft²) between two walls is given by $u = 100y(0.1 - y)$ ft/s, where y is measured in feet and the space between the walls is 0.1 ft. Plot the velocity distribution and determine the shear stress at the walls.

Find: Shear stress at walls. **Also, Plot the velocity distribution**

ANALYSIS

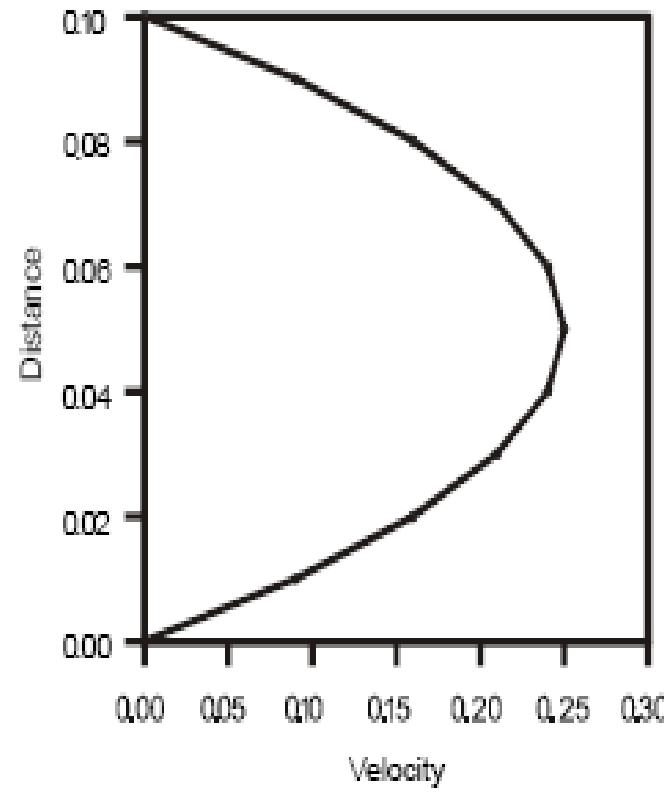
Velocity distribution

$$u = 100y(0.1 - y) = 10y - 100y^2$$

Problem (2.31)

Velocity Distribution Plot

Plot



Problem (2.31)

Shear stress at the walls can be calculated as follows

Velocity distribution

$$u = 100y(0.1 - y) = 10y - 100y^2$$

Rate of strain

$$\begin{aligned} du/dy &= 10 - 200y \\ (du/dy)_{y=0} &= 10 \text{ s}^{-2} \quad (du/dy)_{y=0.1} = -20 \text{ s}^{-2} \end{aligned}$$

Shear stress

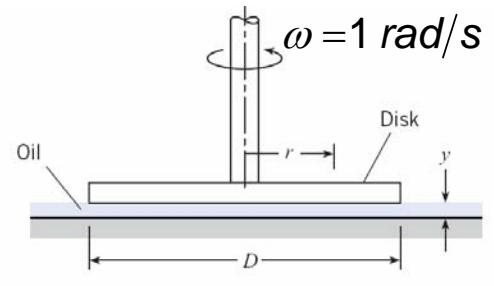
$$\tau_0 = \mu \frac{du}{dy} = (8 \times 10^{-5}) \times 10 = \boxed{8 \times 10^{-4} \text{ lbf/ft}^2}$$

$$\tau_{0.1} = \boxed{16 \times 10^{-4} \text{ lbf/ft}^2}$$

Problem (2.41)

2.41 The device shown consists of a disk that is rotated by a shaft. The disk is positioned very close to a solid boundary. Between the disk and the boundary is viscous oil.

- If the disk is rotated at a rate of 1 rad/s , what will be the ratio of the shear stress in the oil at $r = 2 \text{ cm}$ to the shear stress at $r = 3 \text{ cm}$?
- If the rate of rotation is 2 rad/s , what is the speed of the oil in contact with the disk at $r = 3 \text{ cm}$?
- If the oil viscosity is $0.01 \text{ N} \cdot \text{s/m}^2$ and the spacing y is 2 mm , what is the shear stress for the conditions noted in part (b)?

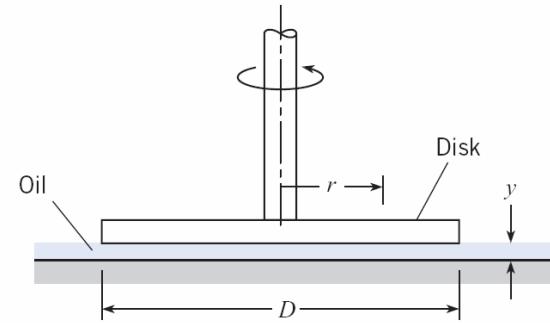


PROBLEM 2.41

Situation: A disk is rotated very close to a solid boundary—details are provided in problem statement.

Find: (a) Ratio of shear stress at $r = 2 \text{ cm}$ to shear stress at $r = 3 \text{ cm}$. $\omega = 1 \text{ rad/s}$
(b) Speed of oil at contact with disk surface. $\omega = 2 \text{ rad/s}$
(c) Shear stress at disk surface.

Problem (2.41)



Assumptions: Linear velocity distribution: $dV/dy = V/y = \omega r/y$.

ANALYSIS

$$\tau = \mu dV/dy = \mu \omega r/y$$

$$\tau_2/\tau_3 = (\mu \times 1 \times 2/y)/(\mu \times 1 \times 3/y) = 2/3 = 0.667$$

$$V = \omega r = 2 \times 0.03 = 0.06 \text{ m/s}$$

$$\tau = \mu dV/dy = 0.01 \times 0.06/0.002 = 0.30 \text{ N/m}^2$$

$$V = \omega r = 2 \times 0.03 = 0.06$$

Situation: A spherical soap bubble has an inside radius R , a wall-thickness t , and surface tension σ .

Find: (a) Derive a formula for the pressure difference across the bubble
(b) Pressure difference for a bubble with a radius of 4 mm.

Assumptions: The effect of thickness is negligible, and the surface tension is that of pure water.

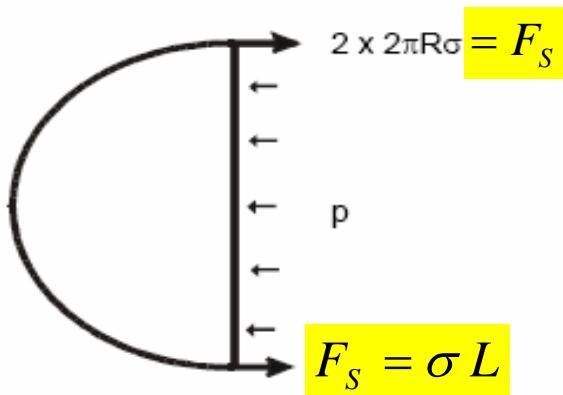
Assumptions: The effect of thickness is negligible, and the surface tension is that of pure water.

APPROACH

Apply equilibrium, then the surface tension force equation.

ANALYSIS

Force balance



Surface tension force

Pressure forces = Surface tension forces

$$\sum F = 0$$

$$\Delta p \pi R^2 - 2(2\pi R\sigma) = 0$$

$$\Delta p = 4\sigma/R$$

$$\sigma_{\text{Water}} = 4 \times 0.073 \text{ N/m}$$

$$\Delta p_{4\text{mm rad.}} = (4 \times 7.3 \times 10^{-2} \text{ N/m})/0.004 \text{ m} = 73.0 \text{ N/m}^2$$

THE END